A Freeway for Light: Topology Protects Lasers from Defects

If you want to admire the beauty behind the 2016 Nobel Prize in Physics – topological phases of matter, take a course in topology, followed by graduate-level solid state physics. But if you ask for a concrete application of this topic, you now have an excellent example. Harnessing the concept of topology, scientists have engineered a new way to channel light in lasers. Originally a … Continue reading A Freeway for Light: Topology Protects Lasers from Defects

Help me “photophoretic-trap volumetric displays.” You’re our only hope.

Anyone who has seen Star Wars envisions the future of visual displays as “holograms,” where 3D objects materialize out of light in thin air. However, anyone who has looked at a true hologram will likely have been disappointed at the reality.  Not only does the image not pop out in its full glorious 3-dimensions in front of you, but the object is typically only visible … Continue reading Help me “photophoretic-trap volumetric displays.” You’re our only hope.

It takes two to see (infrared photons anyway)

In a rainbow, the shortest visible wavelength of light is approximately 400nm (blue) and the longest 700nm (red), where all others colors outside this range are invisible to humans.
Except not quite. Artal et. al. demonstrate that the eye’s visual acuity for infrared light (1000nm), is almost the same as for visible green light. The exploited effect in the eye converts two-invisible photons into a single visible one. Importantly, this demonstrated sensitivity to infrared light could enable future ophthalmic devices to help patients with eye conditions, such as cataracts, that make them opaque to visible light. Continue reading It takes two to see (infrared photons anyway)

Performing a 51 qubit computation

Qubits, the quantum analog of a digital bit, are envisioned as the building blocks of the future of computation. The quantum bit is special because of its ability to be in simultaneous values of 0 and 1, while digital bits can only be a 0 or a 1, not both. The calculations of quantum problem become exponentially more difficult as larger qubit computations are required: … Continue reading Performing a 51 qubit computation

Particle Physics Revolutionizes Archaeology

How many mysteries are buried within Egypt’s Great Pyramid of Giza? Whatever the answer, we know of one more. Scientists recently discovered an unknown void in the heart of the pyramid. Over the past centuries, archaeologists have unveiled many features of the pyramid’s interior. If you get a tour today, you can venture along its Grand Gallery, into the king’s chamber, and touch the 4,500-year-old walls … Continue reading Particle Physics Revolutionizes Archaeology

Saying goodbye to our first interstellar visitor

No, I don’t mean Matthew McConaughey. A few weeks ago, our first interstellar visitor flew nearby Earth and now is on its way back out of our solar system. While these types of extra-solar system objects have long been expected to exist as a bi-product of planet formation in nearby solar systems, this is the first ever detected – an event scientists have been waiting decades for. Continue reading Saying goodbye to our first interstellar visitor

Scientists draw from nature to build a material that is both stiff and tough—a rarity in material science

In material science, it is difficult to engineer a material that is both highly stiff and tough. In the past, scientists have increased the stiffness of soft polymers by adding nano-sized particles of stiff materials (e.g. carbon nanotubes, silica), but this does not increase the toughness. Drawing inspiration from structures in nature that are both stiff and tough, scientists injected a flexible elastomer disc with pockets of liquid gallium. Compared to control structures, the addition of liquid gallium significantly increased the stiffness and toughness of the overall structure. While this study leaves us with several questions, it demonstrates that putting liquid inside of solid doesn’t necessarily make the combined material softer, thus contradicting a long-standing theory in the material-science world. Continue reading Scientists draw from nature to build a material that is both stiff and tough—a rarity in material science

Researchers at IBM create triangulene, a magnetized molecule with unknown potential

IBM scientists use microscopy methods to create an “impossible” carbon molecule, triangulene. Triangulene is made of 6 carbon rings with two unpaired electrons roaming about. While triangulene has not been fully characterized at this point, the unpaired electrons have aligned spin, making this molecule a prime candidate for applications in quantum computing and other fields. Continue reading Researchers at IBM create triangulene, a magnetized molecule with unknown potential

Scientists observe light from antimatter for the first time

Physicists at CERN have observed the light emitted from antimatter for the first time, bringing us one step closer to unraveling one of the longest-standing problems in physics today – why is it that regular matter is so much more abundant than antimatter in the Universe? Standard models suggest that for every particle of matter created in the Big Bang, an antiparticle was also created. … Continue reading Scientists observe light from antimatter for the first time

New Physics from the AMS Experiment – Particle Physics on the International Space Station

In 2011 the Alpha Magnetic Spectrometer, or AMS, was launched into space. AMS, housed by the International Space Station and led by a Nobel Prize winning principle investigator, is commonly referred to as the most sophisticated particle physics experiment in space. The experiment was designed to study cosmic rays, a variety of high energy particles produced in space. In five years of operation, AMS has collected … Continue reading New Physics from the AMS Experiment – Particle Physics on the International Space Station