by Lisa Heppler
figures by Jovana Andrejevic

Weightlessness is something many of us have dreamed about since we were kids. We have seen footage of astronauts floating around the International Space Station playing Ping-Pong with balls of water and Pac-Man with strings of M&Ms.

For a moment, as we watch these astronauts thriving in an environment completely alien to us, we are able to imagine ourselves floating around with them. Unfortunately, the magic is short-lived. The weight of our rear ends pressed firmly into our seats brings us crashing back to planet Earth, back to reality.

So, is dreaming really as close as we’ll ever get to floating in space? Is the magical experience of weightlessness really limited to the tiny proportion of human beings who get to call themselves something-nauts (you know, astronauts, cosmonauts, taikonauts, spationauts)? Not so fast.

Weightlessness may only be for astronauts, but with the help of private companies like SpaceX, Blue Origin, and Virgin Galactic, becoming astronauts may not be so far-fetched. Our dreams of floating in space are closer to becoming reality than ever before.

To prepare for our journey, we must first understand what the heck weightlessness actually is.

What is weight?

Our weight on Earth depends on our mass, which is how much matter we are made of, as well as the force of attraction between our mass and the mass of planet Earth. This attractive force, more commonly known as gravity, is a non-contact force that acts on us from a distance. As the name implies, a non-contact force is one that acts between two objects that are not in physical contact with one another, meaning that we need not be touching Earth for gravity to be acting upon us. In fact, we do not feel the force of gravity unless there is some opposing contact force to counteract it. This opposing force is termed normal force, which in contrast to gravity, is a contact force that acts upon objects that are physically associated with one another.

For example, when we are standing on the ground, the force of Earth’s gravity pulls our body towards the ground. However, because our feet are in physical contact with the ground, there is also a normal force pushing upwards on our feet (Figure 1A). It is through this contact (or normal) force on our feet that we are able to perceive the force of gravity as weight. If the ground beneath our feet were to disappear, gravity would nonetheless be acting upon us, but we would be unable to sense it. This inability to feel gravity would make us feel weightless (at least for a moment; Box 1).

Figure 1. Astronauts feel weightless when there is nothing opposing the force of gravity. (A) An astronaut standing on Earth does not feel weightless because the ground creates a normal force that opposes the force of gravity. (B) An astronaut orbiting the Earth does feel weightless because there is no ground or normal force to counteract the force of gravity. Thus, the astronaut is falling. However, since the astronaut is also moving forward super fast, he/she continuously falls around the Earth rather than crashing into the Earth.

Why do astronauts feel weightless?

So what does this mean for orbiting astronauts? In space, astronauts and their spaceship still have mass and are still acted upon by Earth’s gravity.  In this sense, they still have weight, even though Earth’s gravitational force is smaller in orbit than it is on Earth’s surface (Box 1). However, they do not feel their weight because nothing is pushing back on them. In essence, the ground has disappeared from beneath them, and both the astronauts and spaceship are falling (Figure 1B).

Wait, so weightlessness is just free fall? Yes. Free fall is defined as “any motion of a body where gravity is the only force acting upon it.” In the vacuum of space, where there are no air molecules or supportive surfaces, astronauts are only acted upon by gravity. Thus, they are falling towards Earth at the acceleration of gravity.

This begs the question: how are spaceships able to stay in orbit, rather than falling back towards Earth’s surface? Although gravity pulls astronauts towards Earth, the spaceship is traveling so quickly in the forward direction that it ends up orbiting around the earth in a circular pattern, much like a ball swinging at the end of a string. For example, the International Space Station is traveling at about 17,150 miles per hour, and this forward momentum keeps the astronauts in orbit despite being pulled towards Earth.

Is weightlessness only possible in space?

So how can we actually experience weightlessness? Well, the easiest and perhaps cheapest way to experience weightlessness is to take advantage of parabolic flight (aka a trip aboard the Vomit Comet).

To understand how flying in parabolic arcs creates the sensation of weightlessness, we first need to review the four basic forces that act on an airplane (Figure 2A). The first force is drag, which is caused by air molecules that obstruct forward movement of the airplane. The second force is thrust, which is a propulsive force supplied by the engine. The third force is weight. The final force is lift, which results primarily from interactions between the airplane wings and air molecules, and depends on the density of air, the shape of the wings, and the orientation of the airplane in the air. The combination of these four forces determines the speed and direction of the airplane.

Let’s return to the concept of parabolic flight. To create the sensation of weightlessness, the pilot sets thrust equal to drag and eliminates lift. At this point, the only unbalanced force acting on the plane is weight, so the plane and its passengers are in free fall. This is what creates the zero-g experience. However, airplanes can only fall so far before they hit the ground. So, prior to this maneuver, the pilot aims the plane upward and applies a burst of thrust. Then, the plane experiences 20-30 seconds of free fall as it completes the climb and starts to fall back toward Earth. Finally, once the plane returns to the same altitude it started from on the front half of the arc, the pilot re-engages lift to return the aircraft to a stable altitude and prepare for the next climb. The resulting parabolic flight path gives the pilot enough time and distance to fall safely (Figure 2B).

Figure 2. Parabolic flights allow passengers to experience weightlessness without actually going to space. (A) The four forces that act on an airplane are weight, lift, thrust, and drag. Since acceleration occurs in the direction of an unbalanced force, airplanes accelerate in the forward direction when thrust is greater than drag and increase in altitude when lift is greater than weight. (B) When the pilot sets thrust equal to drag and eliminates lift, the only unbalanced force acting on the plane is weight. Accordingly, the plane falls and the passengers feel weightless for about 20-30 seconds. To prevent the plane from crashing into the ground, this weightless maneuver is preceded by a controlled ascent and followed by a controlled descent. This cycle of controlled ascent, weightlessness, and controlled descent creates the parabolic flight path characteristic of zero-g experiences.

In general, parabolic flight is very similar to a hypothetical elevator ride. Imagine that an elevator travels from floor 1 (20,000 feet) to floor 10 (30,000 feet) and back to floor 1 (20,000 feet) without a noticeable stop at floor 10. As the elevator accelerates towards floor 10, the passengers feel heavier than normal (airplane climbing to 30,000 feet). As the elevator approaches floor 10 and immediately changes direction to travel back towards floor 1, the passengers feel weightless (free fall maneuver). Finally, as the elevator decelerates upon returning to floor 1, the passengers feel heavier than normal (airplane descending to 20,000 feet).

Such a flight with the Zero G Corporation starts at $4,950 per person and includes 15 parabolic maneuvers. That comes to about $14 per second of weightlessness. So, the next time you feel your stomach drop on a Delta flight, smile and enjoy the ride! You just won a free second of weightlessness.

How to book a trip to space?

Although a trip on the Vomit Comet does provide the sensation of weightlessness, it will not give you the name of astronaut. For that, you have to go to space! Luckily, SpaceX, Blue Origin, and Virgin Galactic are all working to make that possible.

While SpaceX is poised to be the first private company to send people into space, its customers are currently limited to NASA astronauts, a wealthy individual named Yusaku Maezawa, and 6-8 of Maezawa’s artistic friends.

Fortunately, Blue Origin and Virgin Galactic have catered their weightless experiences to those with slightly smaller checkbooks and slightly less ambitious space traveling plans. Although Blue Origin’s New Shepard and Virgin Galactic’s SpaceShipTwo are very different in vehicular design, both promise private individuals the opportunity to travel to space. Paying customers will leave Earth’s atmosphere, see the curvature of the Earth, and experience a few minutes of weightlessness before returning safely to the ground. Although pricing information and launch dates have yet to be released, several news outlets have reported that tickets will cost $200,000 to $300,000 a piece, and trips will begin as soon as 2019.

Thus, the countdown to becoming something-nauts has officially begun!

Lisa Heppler is a fifth-year PhD candidate in the Biological and Biomedical Sciences Program at Harvard. She studies the role of STAT transcription factors in cancer.

Jovana Andrejevic is a third-year Applied Physics PhD student in the School of Engineering and Applied Sciences at Harvard University.

For More Information:

  • To learn about the effects of weightlessness on astronauts, check out this article from
  • To learn about experiments performed aboard the International Space Station, including those looking at the effects of long-duration weightlessness on human health, visit this page.
  • To learn how NASA studies the effects of weightlessness on non-living things, visit this site.
  • To follow the progress of SpaceX, Blue Origin, and Virgin Galactic, visit their websites and follow them on social media.

28 thoughts on “Free Falling: the science of weightlessness

  1. I am sorry to say that I do not agree your explanation of weightlessness. Anything that stays in orbit can do it in balance of two forces, one being gravity, and the other one being the centrifugal force which is opposing it. It is the “angular acceleration” which creates this opposing force, not the linear speed (angular acceleration being equal to linear speed squared over the radius between the object and the center of the earth). Hence they are not constantly falling towards the earth as you explained, but the gravity is simply kept in balance with the reaction to this angular acceleration.

  2. “This begs the question”. I’m now trying to resist the urge to scream. You meant to say “This raises the question”.

  3. Why A person in aeroplane feel weightless when there is a floor (plan’s lower floor) to exert normal force?

    1. They would feel weightless because while they are in simulated free fall, the floor would not be applying to normal force to them as they are not touching it. The plane is falling at the same speed they are, and therefore the only force acting on them is the acceleration due to gravity of the earth.

    1. Your weight in space would be negligible due to the fact that weight is represented by the mass of an object multiplied by the acceleration due to gravity. In outer space, far away from any other bodies (like the earth or the sun) there will be forces pulling on you, and given enough time you will begin to accelerate towards the one exerting the most force on you, however this would take a long time given a large enough distance from that mass. Due to this, your weight will likely be negligible in space due to a small but non-zero acceleration due to gravity. 0.000001 multiplied by your mass is almost nothing. You will still have a weight, but it will be very low.

    1. The free fall experienced by a ship traveling to Mars, assuming the ship has no forces applying to it, like thrusters, would have an acceleration due to gravity towards the sun, and therefore if that is the only force applying to it it will be in free fall.

  4. Well floating is not actually weightlessness but putting our mass surrounded by greater volume which intern makes us not feel that we are being lifted by volume instead of falling an suspended by mass.Now if that makes sense cool cause I’m just an idiot electrician just trying to sound smart lol.Thank God for you smart guys out

  5. Is weightlessness only experienced when a body is in free fall? What about when the body is floating? Can we experience weightlessness when we float?

    1. A good example of this is the ISS! They are actually in free fall, but they are moving forward fast enough that the y component of their movement is the same as the acceleration due to gravity. That is why they are experiencing weightlessness. If you stopped their movement, they would fall towards the Earth.

Leave a Reply

Your email address will not be published. Required fields are marked *