Bench to Bedside: The Drug Development Pipeline

Shannon McArdel Immunology Program, Harvard University

Outline for this session

Introduction

- The goal
- The pathway
- The players
- The challenges

Illustration

- Multiple Sclerosis
- Natalizumab

Innovations

Tissue on chip

What is a drug?

A product that alleviates, cures or prevents disease, or is intended to affect the structure or function of the body.

Antibiotics

Chemotherapeutic agents

Tricyclic antidepressants

Pennicillin: Public Domain Gleevac: Public Domain

Antidepressants: Harbin, Public Domain Insulin: Isaac Yonemoto, CC-BY

Insulin: Isaac Yonemoto, CC-B Antibody: Public Domain

Insulin (~100x bigger than antibiotic)

Antibody (600x bigger than antibiotic)

What qualities do we want in a new drug?

What is the path to get there?

What are the challenges?

14 years

Average length of time from target discovery to approval of a new drug.

85% Failure rate

From Phase I to FDA approval, during clinical trials.

\$2.6 Billion

Cost per successful drug, when all failures are factored in.

Why do these challenges exist?

Questions?

Example:

Multiple Sclerosis (MS) and natalizumab

Multiple Sclerosis (MS)

- Affects 90 per 100,000 people in the US
- Due to damage to myelin, the insulation for nerves
- Thought to be caused by immune cells

Natalizumab

 Prevents immune cells from entering the brain

Multiple sclerosis: Identified as disease in 1868

1868 1960 1970 1980 1990 2000 2010 2020

Pre-clinical research: Is there a way to cure multiple sclerosis?

How do immune cells enter inflamed brain tissue?

Receptors that might be involved

Test antibodies that block each one

Result

Clinical research:

Test a drug in humans

Features of clinical trials

Randomization

Placebo

Blinded

Study size

\$\$\$

Clinical trials are run in phases

At each phase, many drugs fail

33% Not safe 42%
Not effective

60% of trials in Phase 3 are suspended

Why are safety and efficacy hard to predict?

- Research models of disease are not the same as humans
- Studies of humans are limited by available materials
- A new drug needs to be better than current drugs

Questions?

Natalizumab had very promising results

1997 - 1999

1999 - 2003

2003 -

Expedited FDA approval, in 2004

Natalizumab suspended 3 months later:

Two cases of fatal brain inflammation

(PML: Progressive multifocal leukoencephalopathy)

A.D.A.M. Inc, Medline, National Library of Medicine

Steinman, Nat Rev Drug Disc, 2005.

Reapproved 1 year later Stringent restrictions for use

Key points from the natalizumab story

Discoveries in different fields led to the development of natalizumab

Pre-clinical studies could not predict complications due to JC virus infection

The FDA wants to make SAFE drugs available to patients

Summary

Barnheartowl, Remigho, egore911, Open clip art

To address the challenges

Repurposing of approved drugs

- → Use drugs already approved for safety
- → Test in other candidate diseases

Improve laboratory models of disease

- → Better understand the current models
- → New models

New technology: do more with less

- More data from small clinical samples
- → Allows better study of human biopsies, blood

Innovative approach: Tissue chip for drug screening

Tissue chips

- Mimic human tissues
- Screen drugs before testing in humans

Summary

The drug development pipeline

- The goals
 - Safety, Efficacy, Affordability
- The pathway
 - Long, expensive, challenging
- The players
 - Scientists...Pharma...FDA...Patients
- The challenges
 - Difficult to understand how the body works
 - Difficult to predict how a drug will act in humans
- Innovations
 - Facilitated by growing scientific knowledge
 - Facilitated by new technology

Thank you!

SITN would like to acknowledge the following organizations for their generous support of this event.

The nonprofit plasmid repository

