Math in Nature:
Finding order in chaos

Jessica Kunke
Lei Zhu
Stephen Portillo
Seminar Outline

Math models and nonlinearity
Jessica

Butterfly effect and weather forecasting
Lei

Structure in chaos
Stephen
Part 1:
Math models and nonlinearity

Jessica Kunke
Outline

• Modeling our world

• Linear or nonlinear? That is the question...
Why model? To predict

1. Modeling our world

2. Linear / Nonlinear

http://www.weather.com/weather/hurricanecentral/
http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=82341
Why model? To understand

1. Modeling our world

2. Linear / Nonlinear

~3x the area of Boston

http://www.youtube.com/watch?v=kLUzQjE8wU4
What’s in a model?

• equations (relationships)
• not exact reality, but useful
 – purposes: predict, understand
 – can’t simulate exact reality
 – to simulate ≠ to understand
• involves making simplifications
• no single model
• can use observations
• might use computers

1. Modeling our world
2. Linear / Nonlinear

http://www.weather.com/weather/hurricanecentral/
http://www.youtube.com/watch?v=kLUzQjE8wU4
An example: crop yield

light? water? temperature? soil composition?
pollution? pests? wind?
genetics? management? weeds? crop rotation?
...other?
An example: crop yield

- light
- water
- temperature
- soil composition?
- pollution?
- pests?
- wind?
- genetics?
- management?
- weeds?
- crop rotation?
- ...other?

http://openclipart.org/detail/168724/simple-farm-crops-by-viscious-speed
http://www.50states.com/maps/massachusetts.htm#UoMhsY29zAo
1. Modeling our world

2. Linear / Nonlinear

An example: crop yield

- light
- water
- temperature
- soil composition
- pests
- pollution?
- wind?
- genetics?
- management?
- weeds?
- crop rotation?
- ...other?

http://openclipart.org/detail/168724/simple-farm-crops-by-viscious-speed
http://www.50states.com/maps/massachusetts.htm#.UoMhsY29zAo
An example: crop yield

- light
- water
- temperature
- soil composition
- pests
- color
- duration

Wind?
Weeds?
Crop rotation?
...other?

http://openclipart.org/detail/168724/simple-farm-crops-by-viscious-speed
http://www.50states.com/maps/massachusetts.htm#UoMhsY29zAo
What’s in a model?

✓ equations (relationships)
✓ not exact reality, but useful
 ✓ purposes: predict, understand
 ✓ can’t simulate exact reality
 ✓ to simulate ≠ to understand
✓ involves making simplifications
✓ no single model
✓ can use observations
✓ might use computers
Questions?
Ed Lorenz and the Discovery of Chaos, 1961

Value of Weather Variable vs Time

0.506127 vs 0.506

error of about 3 in 10,000!

http://www.ucar.edu/communications/quarterly/spring08/ed_lorenz.jsp
http://mcherm.com/permalinks/1/the-butterfly-effect
1. Modeling our world

2. Linear / Nonlinear

A Linear Model

Independent

Interacting

Time

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/36937/gazelle-by-papapishu
1. Modeling our world

A **Non**linear Model

2. Linear / Nonlinear

<table>
<thead>
<tr>
<th>Independent</th>
<th>Interacting</th>
</tr>
</thead>
<tbody>
<tr>
<td> + </td>
<td> ≠</td>
</tr>
</tbody>
</table>
1. Modeling our world

A **Non**linear Model

2. Linear / Nonlinear

Independent

Interacting

Time

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/31975/architetto----leone-02-by-anonymous
1. Modeling our world

A **Non**linear Model

2. Linear / Nonlinear

- Independent
- Interacting

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/31975/architetto----leone-02-by-anonymous
1. Modeling our world

2. Linear / Nonlinear

A Nonlinear Model

Independent

Interacting

No superposition!

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/31975/architetto----leone-02-by-anonymous
1. Modeling our world

A **Non**linear Model

- Independent

- Interacting

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/31975/architetto----leone-02-by-anonymous
1. Modeling our world

A **Nonlinear** Model

- Independent
- Interacting

Time

Sensitivity to initial conditions

http://openclipart.org/detail/22287/cartoon-zebra-by-studiofibonacci
http://openclipart.org/detail/31975/architetto----leone-02-by-anonymous
Summary: Linear vs Non-linear

<table>
<thead>
<tr>
<th>Superposition</th>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>– The result of the combination is the same as the combination of the separate results</td>
<td>Yes!</td>
<td>Nope</td>
</tr>
</tbody>
</table>
Modeling our world

...nonlinearity is everywhere!
Summary

• Models help us study nature

• Nonlinear models
 – Superposition
 – Sensitivity to initial conditions
 – A note about feedbacks and interactions

• Nonlinearity is everywhere!
Part II
Butterfly effect and weather forecasting

Lei Zhu
Phd student
Atmospheric chemistry
Butterfly effect in popular culture

When a butterfly flaps its wings in one part of the world it can cause a hurricane in another part of the world.
A metaphor from Edward Lorenz

One meteorologist remarked that if the theory were correct, one flap of a seagull’s wings would be enough to alter the course of the weather forever.

-Lorenz, 1963

Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas?

-Lorenz, 1972

Seagull evolved into the more poetic butterfly
“Nail effect”: An old poem

Lessons we learn:

A tiny change can lead to a huge difference in the final results

For want of a nail the shoe was lost,
for want of a shoe the horse was lost;
and for want of a horse the rider was lost;
being overtaken and slain by the enemy,
all for want of care about a horse-shoe nail.

-Benjamin Franklin
Butterfly effect: from the perspective of chaos theory

- Sensitivity to the initial conditions
- Every observation has errors
- The error will be propagated through the nonlinear system
- Thus, it’s almost impossible to make long time predictions in a nonlinear system
Butterfly effect: An example

Consider a temperature forecasting model:

\[\begin{cases} Y_t = 1.5 \times Y_{t-1}^2 - 1 \\ T_t = 30 \times (Y_t + 1) + 60 \end{cases} \]

Initial condition from observation
Butterfly effect: Any pattern?

Can you see any pattern in simulations with different initial conditions?

Consider our temperature model again:
Weather forecasting

• Short term forecasting (~12h) is very accurate
• Long term forecasting is impossible.
• But we can predict the probability!
Butterfly effect: Predict the probability

Run the simulation for 1000 times with slightly different initial conditions.
Butterfly effect: Predict the probability

Time series for 1000 simulations

60% confidence

600 of the 1000 simulations: Range from 60.9-68.3 F
Weather forecasting

• What improves our prediction capabilities?

Forecasting accuracy from 1981 to 2011
Summary

• Butterfly effect is nothing more than a metaphor
• Long term weather forecasting is impossible
• But we can predict the probability
• There is a general pattern/rule/structure in a chaotic system
Part III:
Structure in Chaos

Stephen Portillo
Understanding the Patterns

It’s impossible to predict the exact behaviour of non-linear systems,

But non-linear systems have patterns.

(a) T1, Initial=100

(b) T2, Initial=100+1

(c) T2-T1

What can we learn about these patterns?
Outline

• The Logistic Equation
• Non-Linear Math and Self-Similarity
• Self-Similarity in Nature
AN EXAMPLE:
THE LOGISTIC EQUATION
Simplify the Math

To predict, we need a complicated model

To understand, we start with a simple model

Joint Typhoon Warning Center
www.usno.navy.mil/JTWC/
European Centre for Medium-Range Weather Forecasts
www.ecmwf.int

National Weather Service
http://www.srh.noaa.gov/jetstream/tropics/tc_structure.htm
A First Ecological Model

- Consider an animal population that grows each year
 \[P_{next} = rP \]

- \(P = \text{population this year} \)
- \(P_{next} = \text{population next year} \)
- \(r = \text{reproductive rate} \)

Year 1
- Population 100

Year 2
- Population 200

Year 3
- Population 400

\(r = 2 \)
A First Ecological Model

• Consider an animal population that grows each year

\[P_{next} = rP \]

• \(P = \text{population this year} \)
• \(P_{next} = \text{population next year} \)
• \(r = \text{reproductive rate} \)
The Logistic Equation

• Take the logistic equation

$$P_{\text{next}} = rP(1-P/C)$$

• $C =$ carrying capacity, the population where all resources would be exhausted

$\begin{align*}
\text{Year 1} & : \text{Population 100} \\
\text{Year 2} & : \text{Population 180} \\
\text{Year 3} & : \text{Population 295}
\end{align*}$

$r=2, C=1000$
The Logistic Equation

- Take the logistic equation

\[P_{next} = rP(1 - P/C) \]

- \(C = \text{carrying capacity}, \) the population where all resources would be exhausted

\[r=2, \ C=1000 \]

Year 1
- Population 100

Year 2
- Population 180
 - Population 200

Year 3
- Population 295
 - Population 320

Year 3
- Population 435
 - Population 435

Non-linear!
Demo

- Carrying capacity of 1,000,000
- Reproductive rate of 2.5
Meet the Bifurcation Diagram

Even a simple equation can give complex behaviour – if it’s non-linear.

\[P_{n+1} = rP(1-P/C) \]
Questions?
NON-LINEAR MATH AND SELF-SIMILARITY
Self-Similarity
Feigenbaum’s Constant

$\delta = 4.669201609...$

$4.233...$
Universality

- Is this pattern just for the logistic equation?

\[P_{\text{next}} = rP(1 - P/C) \]

- Now for something completely different...

\[P_{\text{next}} = r\sin\pi P \]
Universality

This self-similarity arises from the math itself.
SELF-SIMILARITY IN NATURE
Self-Similarity in Nature

Wikimedia Commons (user:Olegiwit)
Self-Similarity in Nature

Fractal Geometry, Yale University
http://classes.yale.edu/fractals/
Self-Similarity in Nature

Wikimedia Commons (user:Yann)
Self-Similarity in Nature

Wikimedia Commons (terraprints.com)
Self-Similarity in Nature

Smithsonian Institute
Self-Similarity in Nature

The Millenium Simulation
http://www.mpa-garching.mpg.de/galform/millennium/
The Nature of Self-Similarity

• Nature is described by non-linear math
• Non-linear math gives rise to self-similarity
• Nature has self-similarity arising from non-linear math
Conclusion

• We understand nature by using mathematical models, often non-linear
• We can’t calculate the exact behaviour of non-linear models, but we can still make useful predictions
• Self-similarity arises from non-linear math itself, and is related to self-similarity in nature
Thank you!

SITN would like to acknowledge the following organizations for their generous support.

Harvard Medical School
Office of Communications and External Relations
Division of Medical Sciences

The Harvard Graduate School of Arts and Sciences (GSAS)

The Harvard Biomedical Graduate Students Organization (BGSO)

The Harvard/MIT COOP

Restaurant Associates
1. Modeling our world

2. Linear / Nonlinear

Linear Systems
Why model? To understand

1. Modeling our world

2. Linear / Nonlinear

http://www.youtube.com/watch?v=kLUzQjE8wU4
http://www.youtube.com/watch?v=chIzYtJjxhc