Programming Matter
Smart Surfaces, Molecular Machines,
and Invisibility Cloaks

Lauren Zarzar
Nick Schade
Adam Marblestone
Outline for the Evening

• Lauren Zarzar – Programming smart surfaces with hydrogels

• Nicholas Schade – Controlling the way matter interacts with light

• Adam Marblestone – Building tiny molecular machines using DNA
Why build tiny machines?

Answer: much biology occurs at the scale of molecules and cells

To advance medicine, we must build technology at that scale!

An artist’s conception of nano-medicine

Why build tiny machines?

Answer: much biology occurs at the scale of molecules and cells

To advance medicine, we must build technology at that scale!

Example: smart drug-delivery

- closed box containing toxic anti-cancer drug
- latch on box detects cancer cell
- targeted release of drug
BIG PROBLEM

Machines can’t yet directly manipulate objects at a sub-cellular length scale by *picking them up* and *moving them around*
BIG PROBLEM

Machines can’t yet directly manipulate objects at a sub-cellular length scale by picking them up and moving them around.
how to *build* if you can’t *pick* and *place* objects?

Instead we must endow molecular building blocks with the ability to *assemble* themselves!
But what are the right LEGOs to use at the molecular scale?

- smaller than a cell
- bigger than an atom

?
But what are the right LEGOs to use at the molecular scale?

= DNA
DNA as brick and mortar!
FORTUNATELY, WE CAN MAKE DNA CHAINS IN THE LAB

DNA synthesis machine

DNA

MOLECULAR STRUCTURES & ROBOTS
FORTUNATELY, WE CAN MAKE DNA CHAINS IN THE LAB

… or buy it online!
Why DNA is like LEGO

design
geometry
Why DNA is like LEGO

DNA is a chain made of 4 letters: A, T, G and C

A sticks to T
C sticks to G

geometry sequence
Why DNA is like LEGO

TWO DNA STRANDS THAT STICK TOGETHER PERFECTLY ARE COMPLEMENTARY

...G T C A ...
...C A G T ...

geometry sequence
Why DNA is like LEGO

geometry sequence atomic structure
scaffolded DNA origami

Scaffold Strand:

Long single-stranded DNA molecule of *known sequence*
scaffolded DNA origami

Let’s fold it into a rectangle!
scaffolded DNA origami

Let’s fold it into a rectangle!
Let’s fold it into a rectangle!

Want to pinch together these two points in the final structure….
Want to pinch together these two points in the final structure….

Let’s fold it into a rectangle!
Want to pinch together these two points in the final structure….

… so create a two-part **staple** strand which joins them!
Want to pinch together these two points in the final structure....

... so create a two-part staple strand which joins them!
Want to pinch together these two points in the final structure....
Folding a complete shape requires many staples…
Folding a complete shape requires many staples…
Folding a complete shape requires many staples...
Recipe: scaffold + staples $\xrightarrow{\text{self-assembly}}$ DNA object
Animation by Shawn Douglas
scaffolded DNA origami – it works!

Paul Rothemund
scaffolded DNA origami – it works!

These are real pictures taken with an atomic force microscope
From 2D to 3D

William Shih’s lab

From 2D to 3D

pictures taken with an electron microscope
cad-nano software for designing DNA origami nano-structures

Shawn Douglas et al
cad-nano software for designing DNA origami nano-structures

cadnano simplifies and enhances the process of designing three-dimensional DNA origami nanostructures. Through its user-friendly 2D and 3D interfaces it accelerates the creation of arbitrary designs. The embedded rules within **cadnano** paired with the finite element analysis performed by cando, provide relative certainty of the stability of the structures.

cadnano features:
- Platform independent (tested in Windows, OSX and Linux)
- Visual cues aid design process for stable structures
- 3D interface powered by Autodesk Maya®
- Open architecture for plug-in creation
- Free and open source (MIT license)

Shawn Douglas et al www.cadnano.org
Question: can we use DNA nanostructures for delivering drugs to targeted locations in the body?
College freshmen designing “nano-submarines” (molecular containers) for targeted drug delivery

College freshmen designing “nano-submarines” (molecular containers) for targeted drug delivery

College freshmen designing “nano-submarines” (molecular containers) for targeted drug delivery

Take home messages

DNA is an excellent tool for building devices at a scale comparable to sub-cellular structures
Take home messages

DNA is an excellent tool for building devices at a scale comparable to sub-cellular structures.

At this scale, it is necessary to use self-assembly as the manufacturing principle – by writing the necessary information into the molecular building blocks.
Take home messages

DNA is an excellent tool for building devices at a scale comparable to sub-cellular structures.

At this scale, it is necessary to use self-assembly as the manufacturing principle – by writing the necessary information into the molecular building blocks.

This technology may be useful for constructing targeted drug delivery vehicles and for other so-far-unimagined purposes.
The New Science of Self-Assembly

How synthetic DNA, sticky spheres, and social robots will change the way you work and play

April 12 – 14
Harvard Science Center

Learn about the science of things that build themselves!

www.harvardscienceweeks.org
Thank you!

SITN would like to acknowledge the following organizations for their generous support.

Harvard Medical School
Office of Communications and External Relations
Division of Medical Sciences

The Harvard Graduate School of Arts and Sciences (GSAS)
The Graduate Student Council (GSC)

The Harvard Biomedical Graduate Students Organization (BGSO)

The Harvard/MIT COOP