You Are What Your Mother Ate:

The Science of Epigenetics

science in the news

October 6, 2010

You are what your mother ate:

Does your lifestyle alter your epigenetic marks?

Kerry Samerotte

The Time of Your Life

Our epigenetic markings change over the course of our lives

The Time of Your Life

Do our lifestyles affect these changes?

(The alternative is that these changes are set onto an unalterable course at birth)

DNA is not Destiny

Twins are genetically identical, but epigenetic differences accumulate over time.

3 year old twins

50 year old twins

Yellow = Same methylation level

Red/Green = Different methylation levels

What affects epigenetic modification?

Diet?

Behavior?

Exposure to harmful substances?

We don't know!

Diet?

Behavior?

Exposure to harmful substances?

Beginning to Explore

Current research is focused on early life

Epigenetics in Early Animal Life

Of Mice and Methyl

Remember these mice?

They are genetically identical

How can they be different colors?

Epigenetic Methylation Turns Genes Off

Epigenetic modification alters which genes are on or off

ON

vs.

You Are What Your Mother Ate

This mouse's mother ate a typical diet

Methylation stopped the yellow "agouti" gene from being expressed!

The Queen Stands Alone

Worker and queen bees are genetically identical

Worker Bees

Queen Bee

Social insects: Only the queen can reproduce

How? Ovary development genes are methylated in workers!

A Diet Fit for Queens

Worker Bees

Fed honey

By default, ovary genes are methylated

Workers cannot reproduce

Queen Bee

Fed "royal jelly"

Royal jelly prevents methylation of DNA

Ovary genes expressed and queens emerge!

On or Off?

Mouse example: diet added methyl groups and turned a gene off

Default state is unmethylated

Bee example: diet removed methyl groups and turned genes on

Default state is methylated

Whether methylation is beneficial or detrimental depends on the particular gene and on the environment

All You Need is Love

Maternal behavior can also have epigenetic consequences

Rats receiving good maternal care are more resilient to stress.

-increased stress hormone receptors (glucocorticoids)

-more willingly eat novel foods

-explore new environments

Nature or Nurture?

High handling, low stress mom

Low handling, high stress mom

High handling, low stress mom

Low handling, high stress mom

Nurture! (but how?)

Differences in the amount of glucocorticoid receptor proteins These prevent overproduction of stress hormones

Mice with absent moms:

Less glucocorticoid receptor

Gene encoding glucocorticoid receptor is
methylated & bound by histones

Mice with attentive moms:

More glucocorticoid receptor

Gene encoding glucocorticoid receptor has
decreased methylation and histones

Nurture! (but how?)

Differences in amount of glucocorticoid receptor proteins These prevent overproduction of stress hormones

Maternal care removes epigenetic modifications to turn glucocorticoid receptor gene on

What causes epigenetic modification?

Diet?

Behavior?

Methyl source in mice

Parental care in rats

Royal Jelly in bees

What about toxins?

Environmental Toxins

CANADA LIKELY TO LABEL PLASTIC INGREDIENT "TOXIC:

Invisible Danger? Parents Look Inside the Lunchbox. A HARD PLASTIC IS RAISING HARD QUESTIONS

BPA Plastics: An Intense Debate

In a Feast of Data on BPA Plastic, No Final Answer

The BPA Basics

BPA = Bisphenol A

$$HO - \left(\begin{array}{c} CH_3 \\ CH_3 \end{array} \right) - OH$$

There are various health concerns

We'll only talk about the possible epigenetic effects highlighted in a 2007 study by Dolinoy and colleagues from PNAS

Caveats:

Single study Less than 100 mice High concentrations of BPA

The BPA Hypothesis

Bisphenol A **REMOVES** DNA methylation

This alters patterns of gene expression

Mother mice Fed a typical diet

Mother mice Fed a BPA rich diet

Mother mice Fed a typical diet

↓ 60 offspring

Question:
How many are yellow?
(Methylation removed)

Mother mice Fed a BPA rich diet

Mother mice Fed a typical diet

60 offspring

Mother mice Fed a BPA rich diet

Mice fed **200x more BPA** per kg than the **Maximum EPA Recommended Dose**: 10mg/kg bodyweight > 0.05mg/kg
Mice fed **10,000x more BPA** per kg than **average human intake**: 10mg/kg bodyweight > 0.00011mg/kg

Coat Color Data

Mice from mothers fed diets rich in BPA vs. no BPA

Epigenetic Data

Nine sites commonly methylated on yellow "agouti" gene

AGATACCCGCTCC H₃C GATA(H₃C TATACGCTCACGATAGCTAGCATCA GCTCTCACGACCTCGATCCAGACTAGATCGAAGATACCCGCTCCAGATCGAT ACAGCTTATACGCTCACG H₃C TAGCATCAGCT H₃C GACCTCGATCCAG ACTAGATCGAAGATACCCGGTCCAGATCGATACAGGTTATACGCTCACGATA GCTAGCATCA H₃C CACGACCTCGATCC H₃C AGATCGAA H₃C CCGCT CCAGATCGATACAGCTTATACGCTCACGATAGCTAGCATCAGACTAGATCCAGACTAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCAGATCCACACTTATACGCTCACGATCCAGATCCAGATCCAAGCTTATACGCTCACGATCCAGATCCAGATCCAAGCTTATACCCTCACGACCTCCAGATCCAGATCCAGCTTCACGACTCACGATCCAGATCCAGCTTCACGACTCACGATCCAGATCCAGCTTCACGACTCACGATCCAGATCCAGCTTCACGACTCACGATCCAGATCCAGCTTCACGACTCACGATCCAGATCCAGCTTCACGACCTCCAGATCCAGATCCAGCTTCACGACTCAGCATCCAGATCAGATCCAGATCCAGATCCAGATCCAGATCCAGAT

Epigenetic Data

Hypothesis: BPA removes methylation at these nine sites

Can proper nutrition combat toxins?

Extra methyl diet increased methylation: More brown mice High BPA diet decreased methylation: More yellow mice What about BPA + extra methyl?

Conclusions about BPA

Although intriguing, this study is not conclusive evidence that BPA is unsafe at current levels.

Caveats:

Not enough mice Multiple effects of BPA Single lab's results Quantity of BPA

What's next:

More research...
that goes for everything

Diet?
Behavior?

Summary

There is mounting evidence that epigenetic modifications like methylation and histone binding are affected by lifestyle and environment

Thank you!

Questions?

