Slow and Steady Drug Delivery Keeps Biomedical Devices Kicking

Researchers from MIT have developed a novel method to locally deliver drugs and prevent immune activity around implanted biomedical devices over several months. The method is based on the formation of crystals of immunosuppressive drugs, which can be included in devices and slowly dissolve over the course of months. While this method substantially increases the length of time tested devices can function, difficulty of crystallizing certain drugs or introducing them into specific devices may prove to be a challenge in adapting this method to other systems. Even so, for many cases, this method will likely substantially reduce the difficulty of maintaining device stability for extended periods of time. Continue reading Slow and Steady Drug Delivery Keeps Biomedical Devices Kicking

Efficient drug delivery platform into the brain

Treatment of neurological disorders, such as Parkinson’s disease and stroke, has always been a challenging task, partly due to the existence of the blood-brain barrier (BBB). The BBB is a border that separates the blood circulation from the surrounding brain tissue. In a healthy brain, the BBB only allows the passage of nutrients crucial to brain function, while restricting the transportation of other substances, including … Continue reading Efficient drug delivery platform into the brain