All About That Mucus: How it keeps us healthy

by Jenny Zheng figures by Rebecca Clements With winter soon coming to an end (hopefully), many of us have been plagued by seemingly endless hacking that’s accompanied by phlegm, a type of mucus produced by the respiratory tract. The body starts feeling better after a week of sickness, but even after that “hell-week,” one final foe has to be dealt with: the phlegm. It’s such … Continue reading All About That Mucus: How it keeps us healthy

Have antibiotic resistant bacteria met their match? A new method for antibiotic discovery that could change the arms race.

Antibiotic resistance is a rampant problem around the world. More than 23,000 deaths a year in the US are a result of antibiotic resistant bacteria. Bacteria become resistant to antibiotics in several ways. The antibiotic itself can be broken down, or the components of bacteria targeted by antibiotics can mutate. Over prescription leads to the development of further resistance. With each year there are increasing numbers … Continue reading Have antibiotic resistant bacteria met their match? A new method for antibiotic discovery that could change the arms race.

Colonies 5

The colonies in this image display some of the diversity of pigment production in Pseudomonas aeruginosa. The blue-green colonies contain a pigment called pyocyanin, which is known to be toxic to human cells and helps the bacteria establish a niche during infections. The colonies containing a brown halo produce the brown pigment pyomelanin, which is thought to help the bacteria scavenge for iron, an essential … Continue reading Colonies 5

Bacteriophage: A solution to our antibiotics problem?

by Veerasak “Jeep” Srisuknimit figures by Jovana Andrejevic Our time with antibiotics is running out. In 2016, a woman in Nevada died from a bacterial infection caused by Klebsiella pneumoniae that was resistant to all available antibiotics. Bacteria that is resistant to colistin, an antibiotic of last resort, has been discovered on pig farms in China. Bacteria have been evolving to resist antibiotics faster than … Continue reading Bacteriophage: A solution to our antibiotics problem?

Colonies 4

To get around, Pseudomonas aeruginosa bacterium use a number of motility strategies, such as twitching and gliding. In this image, we see a special kind of bacterial motility behavior known as swarming, where a mass of bacteria moves collectively across a surface.  This is an example of singled celled bacterial species acting in a multicellular way. For a group of cells to swarm, the bacterium … Continue reading Colonies 4

Colonies 3

It may be hard to believe, but this sea of shiny, donut-shaped colonies are Pseudomonas aeruginosa colonies. These Pseudomonas colonies have a genetic mutation that causes many of the bacteria’s genes to be shut off. The donut-shape of these colonies may indicate a two-step growth phase where the younger cells on the outside edge of the colony grow towards more nutrients while the older cells in … Continue reading Colonies 3

Colonies 1 and 2

No one likes to be in crowded spaces, so when colonies reach a critical cell density, cells within the colony begin to lyse, dramatically changing the architecture of the colony. The colony on the left is a wild-type colony, while the colony on the right is a genetic mutant that exhibits an autolytic phenotype, that is the bacterium’s own enzymes “eat up” its cells. The … Continue reading Colonies 1 and 2