Colonies 1 and 2

No one likes to be in crowded spaces, so when colonies reach a critical cell density, cells within the colony begin to lyse, dramatically changing the architecture of the colony. The colony on the left is a wild-type colony, while the colony on the right is a genetic mutant that exhibits an autolytic phenotype, that is the bacterium’s own enzymes “eat up” its cells. The … Continue reading Colonies 1 and 2

Colonies on a Plate

A single bacterial cell is invisible to the naked eye. As that single cell grows and divides into new cells, however, it forms a visible pile of bacteria. In microbiology, we call this pile of bacteria a colony. A colony’s appearance can indicate a lot about the bacterial cells within, such as how they utilize nutrients, if they carry genetic mutations, and how the bacterial … Continue reading Colonies on a Plate

Cross-section of the Developing Zebrafish Heart

There are a multitude of signals that elegantly orchestrate the proper development of the heart. In this image of a 3-day-old zebrafish heart, the signal that is localized to the developing atrio-ventricular valve and smooth muscle is labeled in green using green fluorescent protein (GFP). This particular signal is important for the formation of the cardiac valves, which will allow blood to pass from the … Continue reading Cross-section of the Developing Zebrafish Heart

Zebrafish Heart – 3 Days Old

Here is the developing zebrafish heart at 3 days post-fertilization. Unlike mammals, which have four chambers, the zebrafish heart consists of only two: a single ventricle (left) and a single atrium (right). Despite the difference in the number of chambers, the heart is the first organ to form in both mammals and zebrafish. Can you guess why? The developing embryo needs nutrients and as its … Continue reading Zebrafish Heart – 3 Days Old